Y10 Publications: 4-1-17 to 3-31-18

Primary Publications

Adeleye, A. S., Pokhrel, S., Mädler, L., & Keller, A. A. (2018). Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Research, 132, 12-22. doi:https://doi.org/10.1016/j.watres.2017.12.069

Amaris, Z. N., Freitas, D. N., Mac, K., Gerner, K. T., Nameth, C., & Wheeler, K. E. (2017). Nanoparticle synthesis, characterization, and ecotoxicity: A research-based set of laboratory experiments for a general chemistry course. Journal of Chemical Education, 94(12), 1939-1945. doi:10.1021/acs.jchemed.7b00369

Apodaca, S. A., Tan, W., Dominguez, O. E., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Science of The Total Environment, 599-600, 2085-2094. doi:https://doi.org/10.1016/j.scitotenv.2017.05.095

Chen, C., Waller, T., & Walker, S. L. (2017). Visualization of transport and fate of nano and micro-scale particles in porous media: modeling coupled effects of ionic strength and size. Environmental Science: Nano, 4(5), 1025-1036. doi:10.1039/C6EN00558F

Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J. C., Gardea-Torresdey, J. L., & Xing, B. (2017). Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 11(5), 591-612. doi:10.1080/17435390.2017.1343404

Du, W., Tan, W., Yin, Y., Ji, R., Peralta-Videa, J. R., Guo, H., & Gardea-Torresdey, J. L. (2018). Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Science of The Total Environment, 618, 306-312. doi:https://doi.org/10.1016/j.scitotenv.2017.11.042

Garner, K. L., Suh, S., & Keller, A. A. (2017). Assessing the risk of engineered nanomaterials in the environment: development and application of the nanoFate model. Environmental Science & Technology, 51(10), 5541-5551. doi:10.1021/acs.est.6b05279

Huang, Y., Zhao, L., & Keller, A. A. (2017). Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environmental Science & Technology, 51(17), 9774-9783. doi:10.1021/acs.est.7b02523

Keller, A. A., Adeleye, A. S., Conway, J. R., Garner, K. L., Zhao, L., Cherr, G. N., . . . Zuverza-Mena, N. (2017). Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 7, 28-40. doi:https://doi.org/10.1016/j.impact.2017.05.003

KlanjšÄ�ek, T., Muller, E. B., Holden, P. A., & Nisbet, R. M. (2017). Host–Symbiont Interaction Model Explains Non-monotonic Response of Soybean Growth and Seed Production to Nano-CeO2 Exposure. Environmental Science & Technology, 51(9), 4944-4950. doi:10.1021/acs.est.6b06618

Liu, R., Rallo, R., & Cohen, Y. (2018). Fractal dimension calculation for big data using box locality index. [Early online]. Annals of Data Science. doi:https://doi.org/10.1007/s40745-018-0152-5

López-Moreno, M. L., de la Rosa, G., Cruz-Jiménez, G., Castellano, L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. Microchemical Journal, 134, 54-61. doi:https://doi.org/10.1016/j.microc.2017.05.007

López-Moreno, M. L., Cedeño-Mattei, Y., Bailón-Ruiz, S. J., Vazquez-Nuñez, E., Hernandez-Viezcas, J. A., Perales-Pérez, O. J., . . . Gardea-Torresdey, J. L. (2018). Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. Journal of Hazardous Materials, 347, 196-217. doi:https://doi.org/10.1016/j.jhazmat.2017.12.058

Mansukhani, N. D., Guiney, L. M., Wei, Z., Roth, E. W., Putz, K. W., Luijten, E., & Hersam, M. C. (2018). Optothermally reversible carbon nanotube–DNA supramolecular hybrid hydrogels. Macromolecular Rapid Communications, 39(2), 1-6. doi:10.1002/marc.201700587

Medina-Velo, I. A., Dominguez, O. E., Ochoa, L., Barrios, A. C., Hernandez-Viezcas, J. A., White, J. C., . . . Gardea-Torresdey, J. L. (2017). Nutritional quality of bean seeds harvested from plants grown in different soils amended with coated and uncoated zinc oxide nanomaterials. Environmental Science: Nano, 4(12), 2336-2347. doi:10.1039/C7EN00495H

Medina-Velo, I. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bulletin, 42(5), 379-384. doi:10.1557/mrs.2017.87

Mortimer, M., Devarajan, N., Li, D., & Holden, P. A. (2018). Multiwall carbon nanotubes induce more pronounced transcriptomic responses in Pseudomonas aeruginosa PG201 than graphene, exfoliated boron nitride, or carbon black. [Early online]. ACS Nano. doi:10.1021/acsnano.7b08977

Ochoa, L., Medina-Velo, I. A., Barrios, A. C., Bonilla-Bird, N. J., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid. Science of The Total Environment, 598, 513-524. doi:https://doi.org/10.1016/j.scitotenv.2017.04.063

Osborne, O. J., Lin, S., Jiang, W., Chow, J., Chang, C. H., Ji, Z., . . . Nel, A. E. (2017). Differential effect of micron- versus nanoscale III-V particulates and ionic species on the zebrafish gut. Environmental Science: Nano, 4(6), 1350-1364. doi:10.1039/C6EN00675B

Rawat, S., Pullagurala, V. L. R., Hernandez-Molina, M., Sun, Y., Niu, G., Hernandez-Viezcas, J., . . . Gardea-Torresdey, J. (2018). Impacts of copper oxide nanoparticles in bell pepper (Capsicum annum L.) plants: A full life cycle study. Environmental Science: Nano, 5, 83-95. doi:10.1039/C7EN00697G

Romero-Franco, M., Godwin, H. A., Bilal, M., & Cohen, Y. (2017). Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein Journal of Nanotechnology, 8, 989-1014. doi:10.3762/bjnano.8.101

Santillán-Urquiza, E., Arteaga-Cardona, F., Torres-Duarte, C., Cole, B., Wu, B., Méndez-Rojas, M. A., & Cherr, G. N. (2017). Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles. Royal Society Open Science, 4(9), 1-12. doi:10.1098/rsos.170480

Servin, A. D., Castillo-Michel, H. A., Hernandez-Viezcas, J. A., De Nolf, W., De La Torre Roche, R., Pagano, L., . . . White, J. C. (2017). Bioaccumulation of CeO2 nanoparticles by earthworms in biochar amended soil: A Synchrotron Microspectroscopy Study. [Early online]. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.7b04612

Song, R., Qin, Y., Suh, S., & Keller, A. A. (2017). Dynamic model for the stocks and release flows of engineered nanomaterials. Environmental Science & Technology, 51(21), 12424-12433. doi:10.1021/acs.est.7b01907
Stevenson, L. M., Adeleye, A. S., Su, Y., Zhang, Y., Keller, A. A., & Nisbet, R. M. (2017). Remediation of cadmium toxicity by sulfidized nano-iron: the importance of organic material. ACS Nano, 11(10), 10558-10567. doi:10.1021/acsnano.7b05970

Stevenson, L. M., Krattenmaker, K. E., Johnson, E., Bowers, A. J., Adeleye, A. S., McCauley, E., & Nisbet, R. M. (2017). Standardized toxicity testing may underestimate ecotoxicity: Environmentally relevant food rations increase the toxicity of silver nanoparticles to Daphnia. Environmental Toxicology and Chemistry, 36(11), 3008-3018. doi:10.1002/etc.3869

Sun, B., Ji, Z., Liao, Y.-P., Chang, C. H., Wang, X., Ku, J., . . . Xia, T. (2017). Enhanced immune adjuvant activity of aluminum oxyhydroxide nanorods through cationic surface functionalization. ACS Applied Materials & Interfaces, 9(26), 21697-21705. doi:10.1021/acsami.7b05817

Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs - a critical review. Environmental Science: Nano, 5, 257-278. doi:10.1039/C7EN00985B

Tan, W., Gao, Q., Deng, C., Wang, Y., Lee, Y.L., Hernandez-Viezcas, J., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2018). Foliar exposure of Cu(OH)2 nanopesticide to basil (Ocimum basilicum): variety-dependent copper translocatin and biochemical responses.  Journal of Agricultural and Food Chemistry, early online. Doi:10.1021/acs.jafc.8b00339.

Torres-Duarte, C., Ramos-Torres, K. M., Rahimoff, R., & Cherr, G. N. (2017). Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake. Aquatic Toxicology, 189, 134-141. doi:https://doi.org/10.1016/j.aquatox.2017.05.008

Tsang, M. P., Li, D., Garner, K. L., Keller, A. A., Suh, S., & Sonnemann, G. W. (2017). Modeling human health characterization factors for indoor nanomaterial emissions in life cycle assessment: a case-study of titanium dioxide. Environmental Science: Nano, 4(8), 1705-1721. doi:10.1039/C7EN00251C

Wang, Y., Chang, C. H., Ji, Z., Bouchard, D. C., Nisbet, R. M., Schimel, J. P., . . . Holden, P. A. (2017). Agglomeration determines effects of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and growth in soil. ACS Nano, 11(6), 5753-5765. doi:10.1021/acsnano.7b01337

Wang, Y., Mortimer, M., Chang, C., & Holden, P. (2018). Alginic acid-aided dispersion of carbon nanotubes, graphene, and boron nitride nanomaterials for microbial toxicity testing. Nanomaterials, 8(2), 1-22. doi:10.3390/nano8020076

Zaunbrecher, V., Beryt, E., Parodi, D., Telesca, D., Doherty, J., Malloy, T., & Allard, P. (2017). Has toxicity testing moved into the 21st century? A survey and analysis of perceptions in the field of toxicology. Environmental Health Perspectives, 125(8), 1-10. doi:10.1289/EHP1435

Zhao, L., Huang, Y., Adeleye, A. S., & Keller, A. A. (2017). Metabolomics reveals Cu(OH)2 nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environmental Science & Technology, 51(17), 10184-10194. doi:10.1021/acs.est.7b02163

Zhao, L., Hu, Q., Huang, Y., Fulton, A. N., Hannah-Bick, C., Adeleye, A. S., & Keller, A. A. (2017). Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. Environmental Science: Nano, 4(8), 1750-1760. doi:10.1039/C7EN00358G

Zhao, L., Huang, Y., & Keller, A. A. (2017). Comparative Metabolic Response between Cucumber (Cucumis sativus) and Corn (Zea mays) to a Cu(OH)2 Nanopesticide. [Early online]. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.7b01306

Zhao, L., Hu, Q., Huang, Y., & Keller, A. A. (2017). Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering, 5(9), 8294-8301. doi:10.1021/acssuschemeng.7b01968

Leveraged Publications

Amorim, M. J. B., Lin, S., Schlich, K., Navas, J. M., Brunelli, A., Neubauer, N., . . . Wohlleben, W. (2018). Environmental impacts by fragments released from nanoenabled products: A multiassay, multimaterial exploration by the SUN approach. Environmental Science & Technology, 52(3), 1514-1524. doi:10.1021/acs.est.7b04122

Arteaga-Cardona, F., Santillán-Urquiza, E., Pal, U., Méndoza-Álvarez, M. E., Torres-Duarte, C., Cherr, G. N., . . . Méndez-Rojas, M. Á. (2017). Unusual variation of blocking temperature in bi-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 441, 417-423. doi:https://doi.org/10.1016/j.jmmm.2017.06.024

Cai, X., Lee, A., Ji, Z., Huang, C., Chang, C. H., Wang, X., . . . Li, R. (2017). Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Particle and Fibre Toxicology, 14(13), 1-11. doi:10.1186/s12989-017-0193-5

Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry, 65(39), 8552-8559. doi:10.1021/acs.jafc.7b02961

Li, R., Guiney, L. M., Chang, C. H., Mansukhani, N. D., Ji, Z., Wang, X., . . . Xia, T. (2018). Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano, 12(2), 1390-1402. doi:10.1021/acsnano.7b07737

Lin, S., Mortimer, M., Chen, R., Kakinen, A., Riviere, J. E., Davis, T. P., . . . Ke, P. C. (2017). NanoEHS beyond toxicity - focusing on biocorona. Environmental Science: Nano, 4(7), 1433-1454. doi:10.1039/C6EN00579A

Luo, M., Qi, X., Ren, T., Huang, Y., Keller, A. A., Wang, H., . . . Li, F. (2017). Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 9-19. doi:https://doi.org/10.1016/j.colsurfa.2017.08.014

Manshian, B. B., Poelmans, J., Saini, S., Pokhrel, S., Grez, J. J., Himmelreich, U., . . . Soenen, S. J. (2018). Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomaterialia, 68, 99-112. doi:https://doi.org/10.1016/j.actbio.2017.12.020

Mirshafiee, V., Jiang, W., Sun, B., Wang, X., & Xia, T. (2017). Facilitating translational nanomedicine via predictive safety assessment. Molecular Therapy, 25(7), 1522-1530. doi:http://dx.doi.org/10.1016/j.ymthe.2017.03.011

Mirshafiee, V., Sun, B., Chang, C. H., Liao, Y.-P., Jiang, W., Jiang, J., . . . Nel, A. E. (2018). Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. [Early online].  ACS Nano. doi:10.1021/acsnano.8b01086

Moya, E. M., Chavez-Baray, S. M., Torres-Sajquim, M., Gardea-Torresday, J., Martinez, O., Levine, E. C., & Quintana, D. M. (2017). In Pursuit of Safe Drinking Water in the Texas-Mexico Border Region: A Matter of Social Justice. SDRP Journal of Earth Sciences & Environmental Studies, 2(1), 1-9. doi:10.15436/JESES.2.1.1

Naatz, H., Hoffmann, R., Hartwig, A., La Mantia, F., Pokhrel, S., & Mädler, L. (2018). Determination of the flat band potential of nanoparticles in porous electrodes by blocking the substrate-electrolyte contact. The Journal of Physical Chemistry C, 122(5), 2796-2805. doi:10.1021/acs.jpcc.7b11423

Partridge, T., Thomas, M., Harthorn, B. H., Pidgeon, N., Hasell, A., Stevenson, L., & Enders, C. (2017). Seeing futures now: Emergent US and UK views on shale development, climate change and energy systems. Global Environmental Change, 42, 1-12. doi:https://doi.org/10.1016/j.gloenvcha.2016.11.002

Rohr, J. R., Salice, C. J., & Nisbet, R. M. (2017). Chemical safety must extend to ecosystems. Science, 356(6341), 917-917. doi:10.1126/science.aan4968

Servin, A. D., Pagano, L., Castillo-Michel, H., De la Torre-Roche, R., Hawthorne, J., Hernandez-Viezcas, J. A., . . . White, J. C. (2017). Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology, 11(1), 98-111. doi:10.1080/17435390.2016.1277274

Tarn, D., Yu, C.-J., Lu, J., Hartz, A., Tamanoi, F., & Zink, J. I. (2017). In vitro delivery of calcium ions by nanogated mesoporous silica nanoparticles to induce cancer cellular apoptosis. Molecular Systems Design & Engineering, 2(4), 384-392. doi:10.1039/C7ME00046D

Thomas, M., Pidgeon, N., Evensen, D., Partridge, T., Hasell, A., Enders, C., . . . Bradshaw, M. (2017). Public perceptions of hydraulic fracturing for shale gas and oil in the United States and Canada. Wiley Interdisciplinary Reviews: Climate Change, 8(3), 1-19. doi:10.1002/wcc.450

Thomas, M., Partridge, T., Harthorn, B. H., & Pidgeon, N. (2017). Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nature Energy, 2(17054), 1-7. doi:10.1038/nenergy.2017.54

Turley, R., Benavides, R., Hernández-Viezcas, J. Á., & Gardea-Torresdey, J. L. (2018). Insights on ligand interactions with titanium dioxide nanoparticles via dynamic light scattering and electrophoretic light scattering. [Early online]. Microchemical Journal. doi:https://doi.org/10.1016/j.microc.2018.03.015

Wang, X., Liao, Y.-P., Telesca, D., Chang, C. H., Xia, T., & Nel, A. E. (2017). The genetic heterogeneity among different mouse strains impacts the lung injury potential of multiwalled carbon nanotubes. Small, 13(33), 1-11. doi:10.1002/smll.201700776

Xia, T. (2017). Multifunctional nanotherapeutics for treatment of ocular disease. Annals of Eye Science, 2(4), 1-4. doi: 10.21037/aes.2017.03.06

Xia, T. (2018). Upconversion nanoparticle mediated optogenetics for targeted deep brain stimulation. [Early online]. Science Bulletin. doi:https://doi.org/10.1016/j.scib.2018.03.004

Yin, Y., Hu, Z., Du, W., Ai, F., Ji, R., Gardea-Torresdey, J. L., & Guo, H. (2017). Elevated CO2 levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem. Journal of Hazardous Materials, 327, 64-70. doi:https://doi.org/10.1016/j.jhazmat.2016.12.044

Zhan, X., Zhu, M., Shen, Y., Yue, L., Li, J., Gardea-Torresdey, J. L., & Xu, G. (2018). Apoplastic and symplastic uptake of phenanthrene in wheat roots. Environmental Pollution, 233, 331-339. doi:https://doi.org/10.1016/j.envpol.2017.10.056

Books and other publications

Harthorn, B. H., Pidgeon, N., & Satterfield, T. (2016). CNS Synthesis Report on IRG 3: Understanding Nanotechnologies' Risks and Benefits: Emergence, Expertise & Upstream Participation. Retrieved from University of California, Santa Barbara: http://www.cns.ucsb.edu/sites/www.cns.ucsb.edu/files/docs/IRG%203_REPORT_WEB.pdf

Harthorn, B. H. (2017). Nanotechnologies in Societal Context: Social, Ethical, and Governance Issues. In B. Bhushan (Ed.), Springer Handbook of Nanotechnology (4th ed.): Springer Berlin Heidelberg.

Jeliazkova, N., Hendren, C. O., Hristozov, D., Farcal, L., Kochev, N., Doganis, P., . . . Cohen, Y. (2018). Chapter 5. Data collection and curation. In A. Haase & F. Klaessig (Eds.), EU US Roadmap Nanoinformatics 2030, Final commenting version 2017-12-30. EU NanoSafety Cluster. Retrieved from https://www.nanosafetycluster.eu/current-nsc-activities/eu-us-nanoinformatics-roadmap.html.

Kefela, T. (2017). Assessment of nanomaterial uptake and depuration kinetics in protozoa by image analysis. Retrieved from Bren School of Environmental Science & Management: https://pdfs.semanticscholar.org/d8ff/ee369345463b39ed0133849ddf2690d898f0.pdf

Lobaskin, V., Asinari, P., Puzyn, T., & Cohen, Y. (2018). Chapter 7. Data Analysis: Modelling properties, interactions and fate of NMs. In A. Haase & F. Klaessig (Eds.), EU US Roadmap Nanoinformatics 2030, Final commenting version 2017-12-30: EU NanoSafety Cluster. Retrieved from https://www.nanosafetycluster.eu/current-nsc-activities/eu-us-nanoinformatics-roadmap.html.

Medina-Velo, I. A., Adisa, I., Tamez, C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Effects of Surface Coating on the Bioactivity of Metal-Based Engineered Nanoparticles: Lessons Learned from Higher Plants. In B. Yan, H. Zhou, & J. L. Gardea-Torresdey (Eds.), Bioactivity of Engineered Nanoparticles (pp. 43-61). Singapore: Springer Singapore.

Murphy, C. A., Nisbet, R. M., Antczak, P., Garcia-Reyero, N., Gergs, A., Lika, K., . . . Watanabe, K. H. (2018). Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model. In N. Garcia-Reyero & C. A. Murphy (Eds.), A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment (pp. 281-302). Cham: Springer International Publishing.

Pidgeon, N., Thomas, M., Partridge, T., Evensen, D., & Harthorn, B. H. (2017). Hydraulic Fracturing - A Risk for Environment, Energy Security and Affordability? In R. E. Kasperson (Ed.), Risk Conundrums: Solving Unsolvable Problems: Routledge.

Pidgeon, N., Harthorn, B. H., Satterfield, T., & Demski, C. (2017). Cross National Comparative Communication about the Risks of Nanotechnologies. In K. H. Jamieson, D. M. Kahan, & D. A. Scheufele (Eds.), Oxford Handbook on the Science of Science Communication (pp. 141-156): Oxford University Press.

Puzyn, T., Verheyen, G., Van Miert, S., Xing, B., Iqbal, S., Zhao, Q., . . . Cohen, Y. (2018). Chapter 6. Data Analysis: Nanochemoinformatics and statistical modelling. In A. Haase & F. Klaessig (Eds.), EU US Roadmap Nanoinformatics 2030, Final commenting version 2017-12-30: EU NanoSafety Cluster. Retrieved from https://www.nanosafetycluster.eu/current-nsc-activities/eu-us-nanoinformatics-roadmap.html.

Rawat, S., Apodaca, S. A., Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Terrestrial Nanotoxicology: Evaluating the Nano-Biointeractions in Vascular Plants. In B. Yan, H. Zhou, & J. L. Gardea-Torresdey (Eds.), Bioactivity of Engineered Nanoparticles (pp. 21-42). Singapore: Springer Singapore.