Y9 Publications: 4-1-16 to 3-31-17

Primary Publications

Adeleye, A. S., Stevenson, L. M., Su, Y., Nisbet, R. M., Zhang, Y., & Keller, A. A. (2016). Influence of phytoplankton on fate and effects of modified zero-valent iron nanoparticles. Environmental Science & Technology, 50(11), 5597-5605. doi: 10.1021/acs.est.5b06251

Adeleye, A. S., & Keller, A. A. (2016). Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environmental Science & Technology, 50(22), 12258-12265. doi: 10.1021/acs.est.6b03684

Adeleye, A. S., Oranu, E. A., Tao, M., & Keller, A. A. (2016). Release and detection of nanosized copper from a commercial antifouling paint. Water Research, 102, 374-382. doi: http://dx.doi.org/10.1016/j.watres.2016.06.056

Barrios, A. C., Medina-Velo, I. A., Zuverza-Mena, N., Dominguez, O. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiology and Biochemistry, 110, 100-107. doi: http://dx.doi.org/10.1016/j.plaphy.2016.04.017

Bilal, M., Liu, H. H., Liu, R., & Cohen, Y. (2017). Bayesian network as support tool for rapid query of the environmental multimedia distribution of nanomaterials. Nanoscale, 9, 4162-4174. doi:10.1039/C6NR08583K

Conway, J. R., & Keller, A. A. (2016). Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Research, 98, 250-260. doi: http://dx.doi.org/10.1016/j.watres.2016.04.021

Du, W., Gardea-Torresdey, J. L., Xie, Y., Yin, Y., Zhu, J., Zhang, X., . . . Guo, H. (2017). Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of The Total Environment, 578, 408-416. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.10.197

Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y., & Guo, H. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110, 210-225. doi: http:/dx.doi.org/10.1016/j.plaphy.2016.04.024

Hjorth, R., Holden, P. A., Hansen, S. F., Colman, B. P., Grieger, K., & Hendren, C. O. (2017). The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environmental Science: Nano, 4(2), 292-301. doi:10.1039/C6EN00443A

Holden, P. A., Gardea-Torresdey, J., Klaessig, F., Turco, R. F., Mortimer, M., Hund-Rinke, K., . . . Nel, A. E. (2016). Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environmental Science & Technology, 50(12), 6124-6145. doi: 10.1021/acs.est.6b00608

Holden, P. A. (2017). DEB modeling for nanotoxicology, microbial ecology, and environmental engineering: Comment on “Physics of metabolic organization” by Marko Jusup et al. Physics of Life Reviews, 20, 49-51. doi: http://dx.doi.org/10.1016/j.plrev.2017.01.013

Jusup, M., Sousa, T., Domingos, T., Labinac, V., Marn, N., Wang, Z., & KlanjšÄ�ek, T. Physics of metabolic organization. Physics of Life Reviews, 20,  1-39.  doi:http://dx.doi.org/10.1016/j.plrev.2016.09.001

Jusup, M., Sousa, T., Domingos, T., Labinac, V., Marn, N., Wang, Z., & KlanjšÄ�ek, T. The universality and the future prospects of physiological energetics: Reply to comments on “Physics of metabolic organization”. Physics of Life Reviews, 20, 78-84. doi:http://dx.doi.org/10.1016/j.plrev.2017.02.002

Klanjscek, T., Muller, E. B., & Nisbet, R. M. (2016). Feedbacks and tipping points in organismal response to oxidative stress. Journal of Theoretical Biology, 404, 361-374. doi: http://dx.doi.org/10.1016/j.jtbi.2016.05.034

Klanjscek, T., Muller, E.B., Holden, P.A., Nisbet, R.M. (2017). Host-symbiont interaction model explains non-monotonic response of soybean growth and seed production to nano-CeO2 exposure. Environmental Science & Technology, 51 (9), 4944–4950. Doi: 10.1021/acs.est.6b06618

Li, R., Mansukhani, N. D., Guiney, L. M., Ji, Z., Zhao, Y., Chang, C. H., . . . Xia, T. (2016). Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano, 10(12), 10966-10980. doi: 10.1021/acsnano.6b05692

Majumdar, S., Peralta-Videa, J. R., Trujillo-Reyes, J., Sun, Y., Barrios, A. C., Niu, G., . . . Gardea-Torresdey, J. L. (2016). Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Science of The Total Environment, 569–570, 201-211. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.06.087

Malloy, T., & Beryt, E. (2016). Leveraging the new predictive toxicology paradigm: alternative testing strategies in regulatory decision-making. Environmental Science: Nano, 3(6), 1380-1395. doi: 10.1039/c6en00202a

Malloy, T. F., Zaunbrecher, V. M., Batteate, C., Blake, A., Carroll Jr, W. F., Corbett, C. J., . . . Thayer, K. (2016). Advancing alternative analysis: integration of decision science. [Early online]. Environ Health Perspect. doi: 10.1289/EHP483

Malloy, T., Zaunbrecher, V., Beryt, E., Judson, R., Tice, R., Allard, P., . . . Zarker, K. (2017). Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes. Integrated Environmental Assessment and Management. doi:10.1002/ieam.1923

Mao, Y., Shin, K.-S., Wang, X., Ji, Z., Meng, H., & Chui, C. O. (2016). Semiconductor electronic label-free assay for predictive toxicology. Scientific Reports, 6(24982), 1-8. doi: 10.1038/srep24982

Medina-Velo, I. A., Barrios, A. C., Zuverza-Mena, N., Hernandez-Viezcas, J. A., Chang, C. H., Ji, Z., . . . Gardea-Torresdey, J. L. (2017). Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. Journal of Hazardous Materials, 332, 214-222. doi:http://dx.doi.org/10.1016/j.jhazmat.2017.03.008

Miller, R. J., Muller, E. B., Cole, B., Martin, T., Nisbet, R., Bielmyer-Fraser, G. K., . . . Lenihan, H. S. (2017). Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquatic Toxicology, 183, 85-93. doi: http://dx.doi.org/10.1016/j.aquatox.2016.12.009

Mortimer, M., Petersen, E. J., Buchholz, B. A., Orias, E., & Holden, P. A. (2016). Bioaccumulation of multiwall carbon nanotubes in Tetrahymena thermophila by direct feeding or trophic transfer. Environmental Science & Technology, 50(16), 8876-8885. doi: 10.1021/acs.est.6b01916

Mortimer, M., Petersen, E., Buchholz, B., & Holden, P. (2016). Separation of bacteria, protozoa and carbon nanotubes by density gradient centrifugation. Nanomaterials, 6(10), 1-21. doi: 10.3390/nano6100181

Naatz, H., Lin, S., Li, R., Jiang, W., Ji, Z., Chang, C. H., . . . Pokhrel, S. (2016). Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano, 11(1), 501-515. doi: 10.1021/acsnano.6b06495

Nel, A. E., & Malloy, T. F. (2017). Policy reforms to update chemical safety testing. Science, 355(6329), 1016-1018. doi:10.1126/science.aak9919

Nisbet, R. M. (2017). Challenges for dynamic energy budget theory: Comment on “Physics of metabolic organization” by Marko Jusup et al. Physics of Life Reviews, 20, 72-74. doi:http://dx.doi.org/10.1016/j.plrev.2017.01.018

Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?. Nanotechnology for Environmental Engineering, 1(4), 1-29. doi: 10.1007/s41204-016-0004-5

Priester, J. H., Moritz, S. C., Espinosa, K., Ge, Y., Wang, Y., Nisbet, R. M., . . . Holden, P. A. (2017). Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Science of The Total Environment, 579, 1756-1768. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.11.149

Reddy, P. V. L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Science of The Total Environment, 568, 470-479. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.06.042

Rico, C. M., Johnson, M. G., Marcus, M. A., & Andersen, C. P. (2017). Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environmental Science: Nano, 4, 700-711. doi:10.1039/C7EN00057J

Shatkin, J. A., Ong, K. J., Beaudrie, C., Clippinger, A. J., Hendren, C. O., Haber, L. T., . . . White, R. H. (2016). Advancing risk analysis for nanoscale materials: report from an international workshop on the role of alternative testing strategies for advancement. Risk Analysis, 36(8), 1520-1537. doi: 10.1111/risa.12683

Sun, B., Wang, X., Liao, Y.-P., Ji, Z., Chang, C. H., Pokhrel, S., . . . Xia, T. (2016). Repetitive dosing of fumed silica leads to profibrogenic effects through unique structure–activity relationships and biopersistence in the lung. ACS Nano, 10(8), 8054-8066. doi: 10.1021/acsnano.6b04143

Tan, W., Du, W., Barrios, A. C., Armendariz Jr, R., Zuverza-Mena, N., Ji, Z., . . . Gardea-Torresdey, J. L. (2017). Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environmental Pollution, 222, 64-72. doi: http://dx.doi.org/10.1016/j.envpol.2017.01.002

Waller, T., Chen, C., & Walker, S. L. (2017). Food and industrial grade titanium dioxide impacts gut microbiota. [Early online]. Environmental Engineering Science. doi:doi:10.1089/ees.2016.0364

Wang, X., Mansukhani, N. D., Guiney, L. M., Lee, J.-H., Li, R., Sun, B., . . . Nel, A. E. (2016). Toxicological profiling of highly purified metallic and semiconducting single-walled carbon nanotubes in the rodent lung and E. coli. ACS Nano, 10(6), 6008-6019. doi: 10.1021/acsnano.6b01560

Zhao, H., Osborne, O. J., Lin, S., Ji, Z., Damoiseux, R., Wang, Y., . . . Lin, S. (2016). Lanthanide hydroxide nanoparticles induce angiogenesis via ROS-sensitive signaling. Small, 12(32), 4404-4411. doi: 10.1002/smll.201600291

Zhao, L., Huang, Y., Zhou, H., Adeleye, A. S., Wang, H., Ortiz, C., . . . Keller, A. A. (2016). GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environmental Science: Nano, 3(5), 1114-1123. doi: 10.1039/c6en00093b

Zhao, L., Ortiz, C., Adeleye, A. S., Hu, Q., Zhou, H., Huang, Y., & Keller, A. A. (2016). Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environmental Science & Technology, 50(17), 9697-9707. doi: 10.1021/acs.est.6b02763

Zhao, L., Huang, Y., Hannah-Bick, C., Fulton, A. N., & Keller, A. A. (2016). Application of metabolomics to assess the impact of Cu(OH)2 nanopesticide on the nutritional value of lettuce (Lactuca sativa): Enhanced Cu intake and reduced antioxidants. NanoImpact, 3–4, 58-66. doi: http://dx.doi.org/10.1016/j.impact.2016.08.005

Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez-Viezcas, J. A., Bonilla-Bird, N., López-Moreno, M. L., . . . Gardea-Torresdey, J. L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiology and Biochemistry. doi: http://dx.doi.org/10.1016/j.plaphy.2016.05.037

Leveraged Publications

Croissant, J. G., Fatieiev, Y., Omar, H., Anjum, D. H., Gurinov, A., Lu, J., . . . Khashab, N. M. (2016). Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chemistry – A European Journal, 22(28), 9607-9615. doi: 10.1002/chem.201600587

Croissant, J. G., Fatieiev, Y., Julfakyan, K., Lu, J., Emwas, A.-H., Anjum, D. H., . . . Khashab, N. M. (2016). Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry – A European Journal, 22(42), 14806-14811. doi: 10.1002/chem.201601714

Gust, K. A., Kennedy, A. J., Melby, N. L., Wilbanks, M. S., Laird, J., Meeks, B., . . . Perkins, E. J. (2016). Daphnia magna’s sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. Ecotoxicology, 1-10. doi: 10.1007/s10646-016-1667-1

Hartline, N. L., Bruce, N. J., Karba, S. N., Ruff, E. O., Sonar, S. U., & Holden, P. A. (2016). Microfiber masses recovered from conventional machine washing of new or aged garments. Environmental Science & Technology, 50(21), 11532-11538. doi: 10.1021/acs.est.6b03045

Huang, Y., & Keller, A. A. (2016). Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. Environmental Science: Nano, 3, 1206-1214. doi: 10.1039/c6en00227g

Huang, Y., Fulton, A. N., & Keller, A. A. (2016). Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of The Total Environment, 571, 1029-1036. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.07.093

Huang, Y., Fulton, A. N., & Keller, A. A. (2016). Optimization of porous structure of superparamagnetic nanoparticle adsorbents for higher and faster removal of emerging organic contaminants and PAHs. Environmental Science: Water Research & Technology, 2(3), 521-528. doi: 10.1039/c6ew00066e

Hussain, S., Ji, Z., Taylor, A. J., DeGraff, L. M., George, M., Tucker, C. J., . . . Garantziotis, S. (2016). Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 10(8), 7675-7688. doi: 10.1021/acsnano.6b03013

Jabbari, V., Veleta, J. M., Zarei-Chaleshtori, M., Gardea-Torresdey, J., & Villagrán, D. (2016). Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chemical Engineering Journal, 304, 774-783. doi:http://dx.doi.org/10.1016/j.cej.2016.06.034

Ji, Z. (2016). Use of compositional and combinatorial nanomaterial libraries for biological studies. Science Bulletin, 61(10), 1-17. doi:10.1007/s11434-016-1069-z

Jiang, W., Wang, X., Osborne, O. J., Du, Y., Chang, C. H., Liao, Y.-P., . . . Nel, A. E. (2017). Pro-inflammatory and pro-fibrogenic effects of ionic and particulate arsenide and indium-containing semiconductor materials in the murine lung. ACS Nano, 11(2), 1869-1883. doi:10.1021/acsnano.6b07895

Kagan, C. R., Fernandez, L. E., Gogotsi, Y., Hammond, P. T., Hersam, M. C., Nel, A. E., . . . Weiss, P. S. (2016). Nano day: celebrating the next decade of nanoscience and nanotechnology. ACS Nano, 10(10), 9093-9103. doi: 10.1021/acsnano.6b06655

Lin, D., Story, S. D., Walker, S. L., Huang, Q., & Cai, P. (2016). Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Research, 104, 381-388. doi: http://dx.doi.org/10.1016/j.watres.2016.08.044

Ma, W.; Peng, D.; Walker, S.L.; Cao, B; Gao, C; Huang, Q.; and Cai, P. (2017). Bacillus subtilis Biofilm Development in the Presence of Soil Clay Minerals and Iron Oxides. Nature Publishing Group Biofilms and Microbiomes, 3(4). Online. Doi:10.1038/s41522-017-0013-6.

Noureddine, A., Gary-Bobo, M., Lichon, L., Garcia, M., Zink, J. I., Wong Chi Man, M., & Cattoën, X. (2016). Bis-clickable mesoporous silica nanoparticles: straightforward preparation of light-actuated nanomachines for controlled drug delivery with active targeting. Chemistry – A European Journal, 22(28), 9624-9630. doi: 10.1002/chem.201600870

Rohr, J. R., Salice, C. J., & Nisbet, R. M. (2016). The pros and cons of ecological risk assessment based on data from different levels of biological organization. Critical Reviews in Toxicology, 1-29. doi: 10.1080/10408444.2016.1190685

Sisler, J. D., Li, R., McKinney, W., Mercer, R. R., Ji, Z., Xia, T., . . . Qian, Y. (2016). Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Particle and Fibre Toxicology, 13(42), 1-17. doi: 10.1186/s12989-016-0155-3

Song, H.-M., & Zink, J. I. (2016). EELS study of differential diffusion of Fe and Co in magnetized silica nanocomposites. The Journal of Physical Chemistry C, 120(44), 25578-25587. doi: 10.1021/acs.jpcc.6b07264

Song, S., Su, Y., Adeleye, A. S., Zhang, Y., & Zhou, X. (2017). Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Applied Catalysis B: Environmental, 201, 211-220. doi: http://dx.doi.org/10.1016/j.apcatb.2016.07.055

Song, H.-M., & Zink, J. I. (2016). Hard magnetism in structurally engineered silica nanocomposite. Physical Chemistry Chemical Physics, 18(35), 24460-24470. doi: 10.1039/c6cp04843a

Su, Y., Adeleye, A. S., Huang, Y., Zhou, X., Keller, A. A., & Zhang, Y. (2016). Direct synthesis of novel and reactive sulfide-modified nano iron through nanoparticle seeding for improved cadmium-contaminated water treatment. Scientific Reports, 6(24358), 1-13. doi: 10.1038/srep24358

Sun, B., & Xia, T. (2016). Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B, 4(33), 5496-5509. doi: 10.1039/c6tb01131d

Tassi, E., Giorgetti, L., Morelli, E., Peralta-Videa, J. R., Gardea-Torresdey, J. L., & Barbafieri, M. Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: Modulation of boron phytotoxicity. Plant Physiology and Biochemistry. doi: http://dx.doi.org/10.1016/j.plaphy.2016.09.013

Taylor, A. A., Khan, M. Y., Helbley, J., & Walker, S. L. (2017). Safety evaluation of hair-dryers marketed as emitting nano silver particles. Safety Science, 93, 121-126. doi: http://dx.doi.org/10.1016/j.ssci.2016.11.021

Wang, X., Sun, B., Liu, S., & Xia, T. Structure activity relationships of engineered nanomaterials in inducing NLRP3 inflammasome activation and chronic lung fibrosis. NanoImpact. doi: http://dx.doi.org/10.1016/j.impact.2016.08.002

Westerhoff, P., Alvarez, P., Li, Q., Gardea-Torresdey, J., & Zimmerman, J. (2016). Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 3(6), 1241-1253. doi:10.1039/C6EN00183A

Xia, T., Zhu, Y., Mu, L., Zhang, Z.-F., & Liu, S. (2016). Particulate matter induced pulmonary diseases in 21st century – attention to ambient ultrafine and engineered nanoparticles. National Science Review. doi: 10.1093/nsr/nww064

Books and other publications

Fastman, B., Metzger, M., & Herr Harthorn, B. (2016). Forging new connections between nanoscience and society in the UCSB Center for Nanotechnology in society science and Engineering Fellows Program. In K. Winkkelmann & B. Bhushan (Eds.), Global Perspectives of Nanoscience and Engineering Education (pp. 375-393). Switzerland: Springer International Publishing.

Ge, Y., Horst, A. M., Kim, J., Priester, J. H., Welch, Z., & Holden, P. A. (2016). Toxicity of manufactured nanomaterials to microorganisms. In B. Xing, C. D. Vecitis & N. Senesi (Eds.), Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Hoboken, New Jersey: John Wiley & Sons, Inc.

Harthorn, B. H. (2016). Envisioning our nano-medical futures: techno-benefits and social risks? In L. Manderson, E. Cartwright & A. Hardon (Eds.), The Routledge Handbook of Medical Anthropology (pp. 329-337). New York: Routledge.

Harthorn, B. H., Pidgeon, N., & Satterfield, T. (2016). IRG 3: understanding nanotechnologies' risks and benefits: emergence, expertise & upstream participation (pp. 1-56). University of California Santa Barbara: Center for Nanotechnology in Society.

Huang, Y., & Keller, A. A. (2016). Design and application of magnetic-core composite nano/micro particles for environmental remediation. In P. Wang (Ed.), Rational design of next-generation nanomaterials and nanodevices for water applications. London, United Kingdom: IWA Publishing.

Lohner, S., Andres, A., Thomas, C., R., & Nameth, C. (2017, March). Which Filtration Material Leads to the Best Drinking Water? Retrieved from http://www.sciencebuddies.org/science-fair-projects/project_ideas/Chem_p108.shtml#summary.

Medina-Velo, I. A., Zuverza-Mena, N., Tan, W., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Biophysical methods of detection and quantification of uptake, translocation, and accumulation of nanoparticles. In C. Kole, D. S. Kumar, & M. V. Khodakovskaya (Eds.), Plant Nanotechnology: Principles and Practices (pp. 29-63). Berlin: Springer International Publishing.

Mukherjee, A., Peralta-Videa, J. R., Gardea-Torresdey, J. L., & White, J. C. (2016). Effects and uptake of nanoparticles in plants. In B. Xing, C. D. Vecitis & N. Senesi (Eds.), Engineered nanoparticles and the environment: biopysicochemical processes and toxicity. Hoboken, New Jersey: John Wiley & Sons, Inc.

Wang, Y. (2016). Probing carbonaceous nanomaterial effects on nitrogen fixation of soil-grown soybean 2016 ERI Summer Fellowship Report. Bren School of Environmental Science & Management: University of California Santa Barbara.

Welch, Z. (2016). Optimizing media and planktonic culture conditions for in vitro experimentation using free-living Bradyrhizobium japonicum USDA110. (Master of Science in Marine Science), University of California Santa Barbara.